
QLectives – Socially Intelligent Systems for Quality
Project no. 231200

Instrument: Large-scale integrating project (IP)
Programme: FP7-ICT

Deliverable D.4.1.1
QLectives Platform v1 - Short report

Submission date: 2010-03-01

Start date of project: 2009-03-01 Duration: 48 months

Organisation name of lead contractor for this deliverable: TUDelft

Project co-funded by the European Commission within the Seventh
Framework Programme (2007-2013)

Dissemination level
PU Public X
PP Restricted to other programme participants (including the Commission Ser-

vices)
RE Restricted to a group specified by the consortium (including the Commis-

sion Services)
CO Confidental, only for members of the consortium (including the Commis-

sion Services)

QLectives Deliverable D4.1.1

QLectives Deliverable D4.1.1

Document information

1.1 Author(s)

Author Organisation E-mail
Nazareno Andrade TU Delft N.FerreiradeAndrade@tudelft.nl
Tamás Vinkó TU Delft T.Vinko@tudelft.nl
Johan Pouwelse TU Delft J.A.Pouwelse@tudelft.nl

1.2 Other contributors

Name Organisation E-mail
Gertjan Halkes TU Delft G.P.Halkes@tudelft.nl
Alain van den Berg TU Delft A.M.Vandenberg@student.tudelft.nl

1.3 Document history

Version# Date Change
V0.1 4 January, 2010 Starting version, template
V0.2 1 February, 2010 Complete first draft
V0.3 11 Feburary, 2010 Complete revised version
V1.0 01 March, 2010 Approved version to be submitted to EU

1.4 Document data

Keywords Peer-to-Peer, BitTorrent, Techno-
Social Networking, NAT puncturing,
P2P-Widgets

Editors address data N.FerreiradeAndrade@tudelft.nl,
T.Vinko@tudelft.nl

Delivery date 01 March, 2010

1.5 Distribution list

Date Issue E-mail
Consortium members QLECTIVES@list.surrey.ac.uk
Project officer Jose.FERNANDEZ-

VILLACANAS@ec.europa.eu
EC archive INFSO-ICT-231200@ec.europa.eu

QLectives Deliverable D4.1.1

QLectives Consortium
This document is part of a research project funded by the ICT Programme of the
Commission of the European Communities as grant number ICT-2009-231200.

University of Surrey (Coordinator) University of Fribourg
Department of Sociology/Centre Department of Physics
for Research in Social Simulation Fribourg 1700
Guildford GU2 7XH Switzerland
Surrey Contact person: Prof. Yi-Cheng Zhang
United Kingdom E-mail: yi-cheng.zhang@unifr.ch
Contact person: Prof. Nigel Gilbert
E-mail: n.gilbert@surrey.ac.uk

Technical University of Delft University of Warsaw
Department of Software Technology Faculty of Psychology
Delft, 2628 CN Warsaw 00927
Netherlands Poland
Contact Person: Dr Johan Pouwelse Contact Person: Prof. Andrzej Nowak
E-mail: j.a.pouwelse@tudelft.nl E-mail: nowak@fau.edu

ETH Zurich Centre National de la Recherche
Chair of Sociology, in particular Scientifique, CNRS
Modelling and Simulation Paris 75006,
Zurich, CH-8092 France
Switzerland Contact person: Dr. Camille ROTH
Contact person: Prof. Dirk Helbing E-mail: camille.roth@polytechnique.edu
E-mail: dhelbing@ethz.ch

University of Szeged Institut für Rundfunktechnik GmbH
MTA-SZTE Research Group on Munich 80939
Artificial Intelligence Germany
Szeged 6720, Hungary Contact person: Dr. Christoph Dosch
Contact person: Dr Mark Jelasity E-mail: dosch@irt.de
E-mail: jelasity@inf.u-szeged.hu

QLectives Deliverable D4.1.1

QLectives introduction
QLectives is a project bringing together top social modelers, peer-to-peer en-

gineers and physicists to design and deploy next generation self-organising so-
cially intelligent information systems. The project aims to combine three recent
trends within information systems:

• Social networks - in which people link to others over the Internet to gain
value and facilitate collaboration

• Peer production - in which people collectively produce informational prod-
ucts and experiences without traditional hierarchies or market incentives

• Peer-to-Peer systems - in which software clients running on user machines
distribute media and other information without a central server or admin-
istrative control

QLectives aims to bring these together to form Quality Collectives, i.e. func-
tional decentralised communities that self-organise and self-maintain for the ben-
efit of the people who comprise them. We aim to generate theory at the social
level, design algorithms and deploy prototypes targeted towards two applica-
tion domains:

• QMedia - an interactive peer-to-peer media distribution system (including
live streaming), providing fully distributed social filtering and recommen-
dation for quality

• QScience - a distributed platform for scientists allowing them to locate
or form new communities and quality reviewing mechanisms, which are
transparent and promote quality

The approach of the QLectives project is unique in that it brings together
a highly inter-disciplinary team applied to specific real world problems. The
project applies a scientific approach to research by formulating theories, apply-
ing them to real systems and then performing detailed measurements of system
and user behaviour to validate or modify our theories if necessary. The two ap-
plications will be based on two existing user communities comprising several
thousand people - so-called ”Living labs”, media sharing community tribler.org;
and the scientific collaboration forum EconoPhysics.

QLectives Deliverable D4.1.1

Executive summary

This report accompanies and documents the version 1.0 of the QLectives Plat-

form software. The aim of the QLectives Platform is to combine social network-

ing, facilitation of quality and scalable peer-to-peer (P2P) technology into a next-

generation peer-production platform. It consists of several components which

are continously refined using input from other workpackages. All the compo-

nents of the QLectives Platform are (and will be) generic and re-usable as they

can handle various content types (e.g. software, video, photo, text) and are not

tied to a specific application domain.

The QLectives Platform is built on top of the already deployed and mature

P2P tribler.org code-base, which provides most of the low-level P2P functionali-

ties for the social networking and quality facilitation required. The software ar-

chitecture of QLectives Platform is fully modular and its components can evolve

separately.

This report gives an overview of the overall system architecture of the whole

QLectives Platform. Most of the technical details on the components are supplied

in the appendices as they essentially belong to the tribler.org code-base. Our soft-

ware engineering methodology is evolving the components of the platform and

adding new features to it. Built on the previously existed code-base, QLectives

Platfrom version 1.0 provides the following functionalities:

• for community features and facilitation of quality it is critical that peers can

communicate among themselve, without being prevented by NATs, fire-

walls, etc. Thus, a NAT-puncturing module has been developed which allows

increased connectivity in a P2P system, circumventing prevalent issues in

topology management; and

• the first version of the P2P-Widgets module prototype allows for code to be

dynamically loaded from the network in a P2P application, enabling the

QLectives Deliverable D4.1.1

runtime addition of functionalities to the system.

Contents

1 Introduction 1

2 System Architecture 3
2.1 Tribler Background . 3
2.2 BitTorrent Background . 3
2.3 Architecture Overview . 4

2.3.1 Overlay Protocol Message Handlers 5
2.3.2 TorrentShare Component . 7

3 NAT-puncturing module 13
3.1 Terminology . 14
3.2 Implementation . 15

3.2.1 NAT Type Detection . 16
3.2.2 Filtering Behaviour Detection 16

3.3 Evaluation Results . 18
3.3.1 Connection Success Rate . 18
3.3.2 Time out . 19

4 P2P-Widgets prototype module 21
4.1 High Level Design . 21

4.1.1 Runtime Environment . 21
4.1.2 Discovery and Download . 23
4.1.3 Widget Communication and Storage 23
4.1.4 Widget Market . 24

4.2 Technical Design . 25
4.2.1 Runtime Environment . 25
4.2.2 Widget Format . 27
4.2.3 Security . 27
4.2.4 Discovery and Download . 28
4.2.5 Widget Popularity . 29
4.2.6 Widget Communication and Storage 30
4.2.7 Widget Market . 32

5 Summary and Further Research Questions 35

QLectives Deliverable D4.1.1

A Overlay-Swarm module 39
A.1 PermIDs . 39
A.2 The Overlay Swarm . 40
A.3 Protocol Versioning . 41

A.3.1 Basic Protocol Versioning . 41
A.3.2 Overlay-swarm Protocol Versioning 42
A.3.3 Protocol History . 43

B Decentralized Recommendation Support Module 45
B.1 BuddyCast Protocol . 45
B.2 Detailed Algorithm . 47

B.2.1 Pseudo Code . 47
B.2.2 Valid Peers and Bootstrapping 48
B.2.3 Rate Control . 48

B.3 Wire Format . 51
B.3.1 History and Open Issues . 53

B.4 Obtaining Metadata . 54

C Remote Query Module 55

D Cooperative Downloading 57

E NAT/Firewall Detection module 61

F Reputation System module 63
F.1 ModerationCast . 63
F.2 VoteCast . 64
F.3 Metadata Dissemination . 64

G Social Networking module 67
G.1 Functionalities . 67
G.2 Basic request-reply protocol . 68
G.3 Unavailability of the peers . 68
G.4 Scenarios of establishing friendship links 69
G.5 Possible attacks prevention . 70

H Channels module 71

Chapter 1

Introduction

This report accompanies and documents the version 1.0 of the QLectives Platform

software. It is implemented in the context of the QLectives project which can

serve as middleware to develop peer-to-peer (P2P) applications. Since the start of

the project, the QLectives Platform is the core of the QMedia living lab software,

which is called Tribler and described in detail in the deliverable D4.3.1. In the

future, the QLectives project will consider porting the current QScience living lab

software to the QLectives Platform.

The remaining of this document describes the first release of the QLectives

Platform. Chapter 2 describes the necessary background for the subsequent chap-

ter, overviews of the open-source code base and protocols that serve as starting

point for the QLectives platform and presents the overall architecture of the plat-

form. After the overview, the following chapters focus on contributions from

the QLectives efforts that build on the code base to compose version 1.0 of the

QLectives Platform. Chapters 3 and 4 highlight and describe the implementation

associated with these contributions, namely:

NAT-puncturing module that allows for increased connectivity in a P2P system,

circumventing prevalent issues in topology management.

P2P-Widgets module prototype that allows for code to be dynamically loaded

from the network in a P2P application, enabling the runtime addition of

functionalities to the system.

1

QLectives Deliverable D4.1.1

2

Chapter 2

System Architecture

This chapter first puts in context and describes the open-source code base that

serves as the starting point of our implementation efforts, discussing Tribler and

BitTorrent. Next, it overviews the architecture of the current release of the QLec-

tives Platform.

2.1 Tribler Background

The QLectives Platform builds on the Tribler open-source software. Tribler is

a media-sharing peer-to-peer client in active development since 2006 with code

contributed by volunteers and research projects funded by the European Union

and by Dutch funding agencies. The motivation for basing our implementation

on this code base is twofold. First, Tribler was selected as the software for the

QMedia Living Lab in the context of the QLectives project. It therefore makes

sense to start the QLectives Platform from Tribler’s code. Second, using a mature

open-source project in active development as our code base allows us to share the

burden of implementing basic software functionality with others and to focus on

specific and innovative aspects of development.

2.2 BitTorrent Background

BitTorrent allows for scalable and efficient peer-to-peer data sharing. This proto-

col is used in all file-sharing in the QLectives Platform, and is therefore described

here.

3

QLectives Deliverable D4.1.1

A peer wishing to download a particular file through BitTorrent first needs to

obtain a torrent metafile for the file from, for example, a Web site or RSS news feed.

The metafile gives the peer the address of a tracker for the file and checksums to

verify downloaded parts of the file. The peer then contacts the tracker to obtain

a list of peers currently involved in downloading the file, implying they have

pieces of the file to share.

Next, the peer contacts a random peer to obtain a first piece of the file itself.

With this piece in hand, the peer starts to contact other peers in the list to see if

they will trade its piece for another part of the file. If so, the contacted peer sends

a few blocks of the negotiated piece, and continues to do so as long as the other

does the same. This tit-for-tat mechanism automatically locks out peers who are

unwilling to upload themselves. By monitoring the download rate obtained from

its current set of peers and randomly trying other peers to see if faster peers are

available, a user can maximize its download rate. By always selecting a rare

part of the file from the pieces on offer, a peer ensures it always has a piece of

the file that other peers are interested in. These policies for piece selection and

bandwidth trading lead to a balanced economy with suppliers meeting demand

and achieving their own goal (fast download) at the same time. Once the peer

has obtained the complete file it will become a seeder and provide pieces to other

peers without any return. The set of all peers currently actively exchanging pieces

of the file is called the file’s swarm.

2.3 Architecture Overview

Given a description of Tribler and BitTorrent, it is possible now to discuss the

architecture of the QLectives Platform. Recall that development has Tribler’s

code base as a starting point. This section describes the architecture of the QLec-

tives Platform including all development done prior to the QLectives efforts (and

hence Background Intellectual Property for the purposes of QLectives). The sub-

sequent chapters highlight and detail the development done specifically in the

context of the Qlectives project (Foreground Intellectual Property). The details

for the remainder modules of the platform are presented in appendixes refer-

ences throughout this section.

Figure 2.1 depicts the architecture of the version 1.0 of the QLectives Platform.

4

QLectives Deliverable D4.1.1

The bottom layer is formed by the BitTorrent socket layer that handles incoming

TCP connections and UDP packets and hands them to the higher layers. Go-

ing from left to right, the SecureOverlay, OverlayThreadingBridge and

OverlayApps classes implement the Overlay-Swarm extension, which handles

strong authentication and message exchange between peers (see Appendix A.2).

This functionality is used by a number of other QLectives Platform components

collectively shown in the figure as the Overlay Protocol Message Handlers:

• Decentralized Recommendation Support module, also called BuddyCast

and described in Appendix B;

• Remote Query module, detailed in Appendix C;

• Cooperative Downloading module, described in Appendix D;

• NAT/Firewall Detection module, described in Appendix E;

• Reputation System module, described in Appendix F;

• Social Networking module, described in Appendix G); and

• Channels module, described in Appendix H.

These components use a set of databases collectively known as the MegaCaches.

The TorrentShare component wraps all classes that deal with the down-

load of a single torrent, and is described in detail below. The Session class

manages the collection of currently active downloads and is controlled by the

GUI. Most of its functions are delegated to the LaunchMany class that contains

the thread responsible for handling network traffic. To make callbacks to the user

of the API the Session uses a UserCallbackHandler and associated thread

pool. The DHT class implements the mainline BitTorrent DHT functionality [10].

The internal tracker makes publishing content via the QLectives Platform easier.

The UPnPThread helps in dealing with Network Address Translators (NATs)

and firewalls, as described in Appendix E.

2.3.1 Overlay Protocol Message Handlers

Figure 2.2 shows the current set of overlay-protocol message handlers. There

is one handler for each BitTorrent extension implemented in the Platform. We

5

QLectives Deliverable D4.1.1

Thread−
Pool

NetworkThread

MainThread

QLectives Platform Core Architecture

OverlayThread

Session

Many
Launch−UserCallback−

Handler

SessionPoolThread

Core API

. . .MegaCache/
DB layer

Disk

TCP 7762

TorrentShare
X Tracker

InternalSecure
Overlay

Overlay
Apps

Peer
DB

UPnP
Thread

UDP 7762

Barterc
DB

DB
Torrent Pref

DB
Owner

DB
Peer
DB

BT Socket Layer

DHT

ThreadingBridge
Overlay

GUI

Overlay Protocol Message Handlers

Figure 2.1: Current architecture of the platform. Boxes represent classes or com-
ponents, cylinders represent databases or disk storage and lightning bolts repre-
sent threads.

6

QLectives Deliverable D4.1.1

MegaCache/
DB layer

Overlay
AppsThreadingBridge

Overlay TorrentShare
X

DialbackRemote
Query

Pref
DB

Peer
DB

Owner
DB

BT Socket Layer

2fastSocNetBuddyCastData
Meta Remote

Monitoring

DB
Torrent

Overlay Protocol Message Handlers

Figure 2.2: Architecture of the Overlay Message Handlers and MegaCache/DB
Layer. Thick arrows represent a summary of all the point-to-point interactions
between the components in the two layers.

refer to Appendix B and further for a complete description of the Dialback, Re-

mote Query, BuddyCast+MetaData, Social Networking (SocNet) and cooperative

downloader (2fast) extensions, and that of the Overlay-Swarm protocol itself.

2.3.2 TorrentShare Component

Going one level deeper, we arrive at the architecture of the TorrentShare compo-

nent which handles a single ongoing download, shown in Figure 2.3. This part of

the architecture is inherited from the original ABC BitTorrent client [15] on which

the Tribler background IPR is based. To explain its architecture, this section de-

scribes the steps taken when downloading a torrent.

When an instance of the QLectives Platform starts it:

1. Creates a RawServer object which creates a SocketHandler object and

schedules a task that checks for timeouts on the SocketHandler’s connec-

tions. A task is a method that the RawServer will execute once at a given

time. Most tasks reschedule themselves, making themselves periodic.

2. Calls RawServer to find and bind to a TCP listen port and attempts to open

7

QLectives Deliverable D4.1.1

BT1Download

Python
ServerSocket

Python Socket Layer

PiecePicker
normal/VOD

Single−
Download

Download

Session

GUI

Encoder Encoder.
Connection

Downloader

Connection
Connecter.

Upload

Wrapper
Storage−

Re−
requester

TrackerRequest*Thread

Storage
Socket
Handler Socket

Single−

Single−
RawServer

Connecter

RawServer

poll

NetworkThread

Layer
BT Socket

Torrent Share X

Barterc
DB

Disk

Figure 2.3: Architecture of the TorrentShare component.

this port on the firewall (if any) via UPnP.

3. When asked to download a torrent, the Session object (see above) via the

SingleDownload object ultimately creates a BT1Download, shown at the

top of the figure. This BT1Download object creates a SingleRawServer

object to which all network traffic for this torrent is demultiplexed by the

central RawServer just created.

4. The constructor of the BTDownload1 object, in addition, creates a

PiecePicker(VOD) object. This latter object controls which piece to down-

load next. It also creates a Choker object that will execute the optimistic un-

choking policy. To this extent it schedules a task with the central RawServer.

5. The SingleDownload then calls BTDownload1.initFiles().

6. initFiles creates a Storage object, which maps all bytes in the files in a

torrent into a single linear address space. All indices used in the BitTorrent

protocol refer to this address space. So a piece of data identified by an index

is mapped to a particular offset in a particular file by this object. Further-

more, it creates an empty file for each file in the torrent, and handles file

locking.

8

QLectives Deliverable D4.1.1

7. initFiles creates a StorageWrapper object. Its main task is to execute

the disk-allocation policy. Multiple policies are supported. E.g. “sparse”

uses sparse files (i.e., the pieces are written on their correct place in a file,

but only the actual data written is allocated on the file system). E.g. “pre-

allocate” fills any gaps in the file with zeros. The default policy is “nor-

mal” which writes data consecutively into the files and moves the data in

the right location in the background. In addition, the StorageWrapper

schedules a task with RawServer that checks the integrity of any data al-

ready on disk in case of a restart. It also schedules a task that automatically

synchronizes the data to disk.

8. The integrity check scheduled by the StorageWrapper object is run.

9. The SingleDownload object calls BTDownload1.startEngine().

10. startEngine() initializes the PiecePicker with information about the

pieces already on disk, if any. It creates Measure objects for up- and down-

loads. It creates a RateLimiter object. It creates a Downloader object that

keeps track of the download side of the BitTorrent download (e.g. which

pieces have been received, which pieces are available from peers, etc.). It

creates a similar object for the upload side: Upload.

It creates a Connecter object. It creates a Encoder object which schedules

a task with RawServer to send keep alives on all connections. (In the BT

protocol, messages of length zero are keep alives). Finally, it may create

a HTTPDownloader object which is used by the ‘httpseeds’ extension to

BitTornado that allows seeding of files directly from Web sites [9].

11. The BTDownload1 object creates a Rerequester object which is the tracker

client and which uses a separate thread.

12. When the Rerequester has obtained some peer addresses from the tracker

it calls Encoder.start connections().

13. The Encoder calls Rawserver.start connection() and creates a

Encode.Connection object for the created connection.

14. The Rawserver calls SocketHandler.start connection().

9

QLectives Deliverable D4.1.1

15. The SocketHandler creates a Python socket and connects to the peer. It

then registers the socket with a poll object from Python’s select module,

and creates a SingleSocket object for the connection.

16. The QLectives Platform’s Network Thread finally calls

RawServer.listen forever(), the object’s mainloop.

17. The mainloop calls SocketHandler.do poll() which calls the TCP li-

brary’s poll()/select() method for asynchronous single-threaded net-

working.

18. When data comes in on a connection, the SocketHandler.handle events()

method is called. This method reads the data from the socket and reports it

to the Encoder.Connection for the connection via the data came in()

method.

19. The Encoder.Connection calls the next func function pointer to han-

dle the data. In the handshake phase of a BT connection this will call

methods in Encoder.Connection to handle the handshake. If the hand-

shake is successful, the object calls the Connecter’s connection made()

method. All subsequently received messages are delivered to the Connecter

via got message()

20. The Connecter connection made() method creates its own

Connecter/Connection object which will handle all non-handshake BT

messages. It also registers the connection with the Downloader, the Upload

and the Choker. (Note that there are two classes called Connection, in the

Encoder module and in the Connecter module.).

21. When messages come in, the Connecter will call the appropriate message

handlers in these latter three objects and the Connecter.Connection.

For example, when a PIECE message comes in, it calls the Downloader,

which, in turn, calls the StorageWrapper.

22. To send a message, Connecter.Connection calls the

Encoder.Connection, which, in turn, calls the SingleSocket object,

which, in turn, writes the message to the Python socket.

10

QLectives Deliverable D4.1.1

23. When a new connection arrives on a listening socket, the SocketHandler

calls the Encoder which creates a Encoder.Connection object for it, as

with outgoing connections.

11

QLectives Deliverable D4.1.1

12

Chapter 3

NAT-puncturing module

NAT puncturing is a technique to increase the connectability among peers in a

distributed application. This chapter describes the design, implementation and

evaluation of a NAT puncturing module for the QLectives Platform.

In Peer-to-Peer (P2P) systems computers on the Internet connect with each

other in a symmetrical fashion. This requires that arbitrary computers on the In-

ternet are able to connect with each other. However, the deployment of firewalls

and Network Address Translator (NAT) boxes creates obstacles. NAT puncturing

circumvents some of these obstacles.

By their very nature, firewalls are meant to regulate what connections are per-

mitted. Moreover, firewalls are frequently configured to allow only connections

initiated by the computers inside its domain, based on the assumption of the

client-server model of communication. Of course, in a P2P setting connections

may also be incoming, often on non-standard ports, which these firewalls don’t

allow.

NAT boxes pose a separate but related problem. Although NAT by itself is

not meant as a connection filtering technology, it does present an obstacle for set-

ting up connections: the publicly visible communications endpoint (IP and port

combination) is not visible for the computer behind the NAT box, and may even

be different for each remote endpoint. To make matters worse, NAT technology

is ofter combined with firewalling.

The techniques for dealing with NATs and firewalls are well known. For

example, the STUN [13] protocol details how a computer can determine what

kind of NAT and firewall is between itself and the public Internet. Connection

13

QLectives Deliverable D4.1.1

setup can be done through connection brokering or rendez-vous [6]. It should

be noted though that the connection setup techniques are most useful for UDP

traffic. Setting up a connection for TCP traffic when both computers are behind

a NAT/firewall requires non-standard use of TCP and IP mechanisms, and may

rely on specific NAT/firewall behaviour to work [4].

3.1 Terminology

For the description of the NAT puncturing module in this document we use the

terminology introduced by the BEHAVE working group [2]. Specifically we will

use the following terms and their respective abbreviations:

Endpoint-Independent Mapping (EIM) The NAT reuses the port mapping for

subsequent packets from the same IP address and port to any external IP

address and port. So when sending packets to host A and B from the same

internal IP address and port, hosts A and B will see the same external IP

address and port.

Address-Dependent Mapping (ADM) The NAT reuses the port mapping for sub-

sequent packet from the same IP address and port to the same external IP

address, regardless of the external port. This means that host A will always

see the same external IP address and port, regardless of the port on host A,

but host B will see a different mapping.

Address and Port-Dependent Mapping (APDM) The NAT only reuses the port

mapping for subsequent packets using the same internal and external IP

addresses and ports, for the duration of the mapping. Even when commu-

nicating from the same internal IP address and port, host A will see two

different external IP addresses and/or ports when different ports on host A

are used.

Endpoint-Independent Filtering (EIF) The NAT or firewall allows packets from

any external IP address and port, for a specific endpoint on the NAT or

firewall.

Address-Dependent Filtering (ADF) The NAT or firewall allows packets des-

tined to as specific endpoint on the NAT or firewall from a specific external

14

QLectives Deliverable D4.1.1

IP, after a computer behind the NAT of firewall has sent a single packet to

the external IP.

Address and Port-Dependent Filtering (APDF) The NAT or firewall allows pack-

ets destined to a specific endpoint on the NAT or firewall from external

endpoints only after a packet has been sent to that external endpoint.

For the purposes of our description there is no difference between ADM and

APDM as only single endpoints on the different hosts are considered, which we

will therefore combine into the abbreviation A(P)DM. Similarly we collapse the

definitions of ADF and APDF into A(P)DF.

3.2 Implementation

We have implemented a UDP NAT/firewall puncturing module as part of the

QLectives Platform. Although operational, the module is not yet used in user

downloads at this stage. Because the evaluation of such a tool can only be made

when deployed in users’ machines, we opted to have the current module test its

efficacy and report back its results before we move users’ connection process to

rely entirely on this module.

Currently, the NAT puncturing process works as follows. First, the punctur-

ing module builds a swarm, much like the BitTorrent software. However, instead

of having a separate tracker, it uses a peer at a pre-programmed address and

port and employs a form of Peer EXchange (PEX) to find new peers to connect

with. The PEX messages include the peer ID, the IP address and port at which

the peer originating the PEX message communicates with the remote peer, and

the NAT/firewall type of the remote peer. The latter is included so the receiving

peer can determine whether it is useful to attempt to connect to the remote peer,

as certain combinations of mapping and filtering are not able to connect to each

other.

Our implementation tries to make minimal use of centralised components.

Therefore the detection of the NAT and firewall type are not done using STUN.

Instead, the peers rely on information reported by other peers and by checking

if other peers can connect to it without previous communication in the reverse

direction. Furthermore, peers use other peers as rendez-vous servers (see Fig-

15

QLectives Deliverable D4.1.1

BA

R

1
2

3

1. A sends a reverse connection request for B to R
2. R forwards the reverse connection request to B
3. B sends a connection request to A

Figure 3.1: Rendez-vous for connection setup.

ure 3.1). If a peer R is connected to two other peers A and B, it can serve as

rendez-vous server for them.

In the following sections we will describe the tests used by peers to determine

their NAT and firewall types.

3.2.1 NAT Type Detection

To allow determination of the NAT type that a peer is behind, all peers report

the remote address and port they see when a connection is set up. So each peer

will receive, from its communication partner, his own external address and port.

If the reports from all communication partners are the same (or at least a large

majority is the same), a peer will determine that there is either no NAT or the

NAT has EIM behaviour. Note that the two cases (no NAT or EIM behaviour)

are indistinguishable without a reliable determination of the local address. Fur-

thermore, the difference is mostly irrelevant. If, however, the reported external

IP address and/or port are constantly different, then the peer concludes that it is

behind a A(P)DM NAT.

3.2.2 Filtering Behaviour Detection

The filtering behaviour of a NAT/firewall is detected by checking whether a di-

rect connection request arrives before a reverse connection request arrives. To

enable this to work, when a peer tries to set up a connection using rendez-vous, it

will always first send a direct connection request to the remote peer. In most cases

this direct connection request will arrive at the remote peer before the reverse

16

QLectives Deliverable D4.1.1

Figure 3.2: NAT/firewall type market share

connection request from the rendez-vous, unless the NAT/firewall behaviour is

A(P)DF. So when for a significant fraction of incoming requests the direct con-

nection request arrives before the reverse connection request, the peer concludes

that the filtering behaviour is EIF. Otherwise it must conclude that the filtering

type is A(P)DF.

In principle it would be possible to distinguish between ADF and APDF by

deliberately sending a direct connection request to the wrong port. If the connec-

tion is subsequently successfully set up, the firewall is of the ADF type. However,

to conclude that the firewall is of the APDF type requires several such exper-

iments to ensure that packet loss is not causing a wrong conclusion. Further-

more, the added value is limited as the fraction of ADF firewalls is small (see

Section 3.3) and the only extra connections it allows is between ADF and ADPM

NAT/firewalled peers.

In the Section 3.3 we do make a distinction between ADF and APDF firewalls.

This distinction was made from studying the logs. When a peer with A(P)DF fil-

tering behaviour was able to connect to a peer with A(P)DM mapping behaviour

it must be an ADF peer. This could also be implemented in the software, but

the added value would be even more limited because to determine this we im-

plemented the software such that A(P)DF peers try to connect to A(P)DM peers

anyway, which results in the same connections being tried.

17

QLectives Deliverable D4.1.1

Table 3.1: Connection success rate per NAT/firewall type
From \ To EIM-EIF EIM-APDF EIM-ADF A(P)DM

EIM-EIF 88% 79% 79% 70%
EIM-APDF 83% 63% 76% 0%

EIM-ADF 79% 73% 84% 41%
A(P)DM 78% 0% 14% 0%

3.3 Evaluation Results

In this section we present the results of a trial of the NAT puncturing module

with 826 random peers. The trial was conducted as part of a collaborative trial

of QLective and P2P-Next (our collaborating project), where public broadcaster

BBC provided us with video material This trial allowed us to deploy the NAT

puncturing module on real users’ machines.

Figure 3.2 shows the detected NAT and firewall types for 669 peers which

were able to draw a conclusion from the connections they made. The most dom-

inant type of NAT/firewall is EIM-APDF (52%). This includes both simple fire-

walls and EIM NATs. Theoretically these can connect to each other through a

rendez-vous peer. The fraction of peers that are behind A(P)DM firewalls is only

11%. As these NAT/firewalls are the biggest obstacle, i.e. they can only connect

to EIF filtered peers although connections with ADF filtered peers can also be set

up if the ADF filtered peer initiates the connection.

3.3.1 Connection Success Rate

Next we look at the success rate in setting up a connection between two peers. We

have split these out into the different NAT/firewall types we have distinguished

(see Table 3.1). Note that these percentages refer to a single attempt, without re-

tries. As expected the connections between EIF filtered peers are successful most

often (88%). As already noted in the RFC describing the STUN protocol [13], even

though two peers should be able to communicate given the classification deter-

mined here, subtleties in the actual implementation may prevent actual connec-

tion setup. This effect is already visible in the connections to EIF filtered peers,

for which there should theoretically be no difference in success rate for different

originating NAT/firewalls. However, there is a significant difference between

EIM-EIF/EIM-EIF and A(P)DM/EIM-EIF connections.

18

QLectives Deliverable D4.1.1

Figure 3.3: Mapping/firewall hole time out without (left) and with (right) hand-
shake.

What should be noted is that the success rate for connecting to EIM-A(P)DF

peers is expected to be lower, as that also depends on the success of the rendez-

vous. As our implementation has no acknowledgements for the reverse connec-

tion request forwarding, the results should be scaled by the rendez-vous success

rate (approx. 87%). However, even when taking the rendez-vous success rate into

account, the EIM-APDF/EIM-APDF connection success rate is only 72%. This

again indicates that the classification used does not capture all the subtleties of

NAT/firewall operation.

Attempts to set up connections between EIM-APDF peers and A(P)DM peers

always fail as expected, as do connections between A(P)DM peers. Interestingly,

connections from A(P)DM peers to EIM-ADF peers do succeed for a small frac-

tion of attempts. This may be due to an opened port from a previous attempt

between the same peers, or due to mis-classification of an EIM-EIF peer as EIM-

ADF.

3.3.2 Time out

A final measurement we made was the time out for the mappings/firewall holes.

To measure the timeout, we sent UDP packets to a pre-programmed IP address

and port, after which a reply was sent with a delay. To ensure a rapid measure-

ment, several messages requesting replies at different delays were sent at the

same time. This setup can give wrong results for NAT/firewalls which refresh

the timeout for incoming traffic as well as for outgoing traffic. However, doing

so is a security risk, so we expect few firewalls to behave this way.

19

QLectives Deliverable D4.1.1

The graph on the left in Figure 3.3 shows the results of this measurement.

These results indicate that many firewalls employ a fairly short time out (1 minute

or less) for the created mappings/firewall holes. However, some NAT/firewalls,

particularly those based on the Linux kernel, use a longer time out if more than

two packets have been sent on a particular mapping/firewall hole. We there-

fore also measured the time out where we include an initial handshake before

requesting the delayed reply. The results are shown in the graph on the right in

Figure 3.3. The results are markedly different. Most of the NAT/firewalls that

have a 30 second time out without the handshake now use a much longer time

out. The default value in the Linux kernel is 180 seconds, which explains the

large fraction of peers with that time out when using an initial handshake.

In summary, our results show that connectable peers form a small minor-

ity (21%) on the Internet, and that most NATed and firewalled peers (63% of

all peers) should theoretically be able to set up connections through a rendez-

vous mechanism. However, our results also show that even though connections

should be possible, the connection success rate is significantly lower than for con-

nections between non-filtered peers.

We intend to look into the effect of retries, which may increase the success

rate, particularly for firewalled peers.

20

Chapter 4

P2P-Widgets prototype module

P2P Widgets are chunks or code that can be disseminated and dynamically de-

ployed in a P2P network to create new services and applications on top of a P2P

substrate. With an efficient method for widget discovery and deployment, users

can choose to add new functionality to their P2P client on runtime, adding for ex-

ample new group interaction mechanisms or quality assessment code based on

his social interactions.

Our implementation of P2P Widgets has two dimensions. In this deliverable

we describe the design and implementation of the widgets substrate, that allow

any application developed on top of the QLectives Platform to discover, acquire

and install widgets. In Deliverable 4.3.1 we describe a user interface implemented

in Tribler to expose this functionality to the user and some example widgets.

4.1 High Level Design

4.1.1 Runtime Environment

A Widget Runtime Environment or Widget Engine is the part of the system that

takes care of executing and managing the widgets. For a successful Runtime

Environment, it is necessary to determine the widget language and file format,

the features that are available to the widget (API), and any security measures for

execution of malicious widgets.

QLectives Platform is written in Python, thus the Runtime Environment has

to be written in either Python or a language that is easily integrated with Python,

such as C. When we choose a language and file format for the widget, it is impor-

21

QLectives Deliverable D4.1.1

tant that the Runtime is able to parse the files and execute the language. There

are several interpreters and compilers written in Python. None of them, however,

are far enough developed to be used without any problems. Therefore, we chose

to use the Python interpreter itself to execute the widgets. This means the wid-

get must at least contain one or more Python files. Other files could be metadata

files (which contain for example the author, a Widget ID, version number) and

resource files such as images.

In the current version of our P2P Widgets prototype we chose to not support

metadata and resource files and only support widgets that consist of one Python

file.

The widgets, which are essentially Python modules, have access to all the

Python libraries and all the code of QLectives Platform. This means the Widget

API is already abundant and the developer can implement a lot of features, when

he knows about them, but can also misuse a lot of features. Thus, on the one

hand there should be enough de velopers resources to be able to create interesting

widgets, but we should also take care of security issues. Implemented security

measures in QLectives Platform are as follows

Code signing means that the author of the widget and the widget integrity can

be verified. This verification allows one to run only widgets from trusted

sources and discourages the publishing of malicious widgets.

Whitelisting can be done by certificates. Certain peers are designated to be ini-

tially trusted and they may create whitelist certificates to whitelist a widget

author. We can then distinguish between trusted widget authors and un-

trusted widget authors.

A rating system is implemented in the Widget Market (described in section 4.1.4),

where users can rate and review widgets. These reviews and ratings can be

used by other users to evaluate widgets before acquiring them. However,

a rating system alone would not suffice. The reasons are as follows. First,

there may be false ratings and comments. Second, users have to try the

widget to rate or review it, which means they must first install the mali-

cious widget before they notice it is malicious. But then it may be already

too late. However, the three security measures combined should take care

of most of the abuse.

22

QLectives Deliverable D4.1.1

4.1.2 Discovery and Download

The Widget Discovery and Download subsystem is a key element of the Widget

System and collaborates closely with the Widget Market, which is used to find,

browse, rate and review the widgets. The Discovery and Download subsystem

should take care of the discovery and download of widgets using the P2P System

in a scalable and decentralised manner. With the design of the subsystem, the

browsing requirement of the widget repository should be taken into account.

The discovery and download strategies are the most important design choices.

BuddyCast, which disseminates infohashes and torrents, is used for the discovery

and download strategy. When a torrent is created for each widget and its seeding

gets started, BuddyCast automatically disseminates the torrent files in the net-

work. We only need to distinguish widget torrents from others and on receipt of

a widget torrent, notify the Widget Market. However, BuddyCast only maintains

5000 torrents in the local database. But with a few modifications in BuddyCast

and TorrentCollecting, we could make a bias towards widget torrents, such that

they are disseminated faster. Because we now use torrents, the BitTorrent down-

load protocol can be used easily for downloading.

We distinguish two extremes in download strategies, namely the Download-

On-Install and the Download-On-Discovery strategies. The Download-On-Install

strategy takes the least space on disk, but might take a lot of patience from the

user when he wants to install a widget. The Download-On-Discovery strategy

takes the most disk space and the most bandwidth, because it will eventually

have most of the widgets on disk, but instalment will take almost no time. We

chose for a strategy that is most similar to the Download-On-Discovery. How-

ever, we will only download one widget at the time, to be able to control the

bandwidth usage. We select the most popular widgets to collect first, as this will

decrease download time on installation in most of the cases.

4.1.3 Widget Communication and Storage

The Widget Communication and Storage subsystem takes care of the local stor-

age per widget, finding intra-widget communication peers in the P2P network

and handling the intra-widget communication messages. The local storage and

communication are combined in one subsystem, because they are so closely re-

23

QLectives Deliverable D4.1.1

lated. Both the local storage and Communication API can be designed such that

there is a lot of freedom for the widget or they can be very strict. For example,

we might design the local storage to support 5 key-value pairs per widget, or to

support a full database where tables can be created and queried as one would

like.

The Communication API might support functions for retrieving communica-

tion partners, direct communication and broadcast. This way, there is little con-

trol over the messages and bandwidth to be communicated. It could also support

gossiping in a way that the system controls the bandwidth. This can be done by

letting the widget implement functions for handling received messages and for

the creation of a gossip message. The system then chooses the communication

partners and is able to control the bandwidth by checking the message size and

choosing the message interval.

We have chosen to support the gossip system [1], to have more control over

the widget communication. The Widget Communication and Storage subsystem

takes care of selecting the gossip partners and controls the bandwidth. The mes-

sage structure is left to the widget itself. Because widgets are essentially small

programs with one theme, it is enough to support one database table per widget.

The table structure can be defined in the widget such that its data is completely

customised. With an easy API for inserting, deleting, selecting and updating the

storage table, a widget that communicates should be easily created.

Finding communication partners for a widget can be supported in two obvi-

ous ways. First, BuddyCast data contains information on who is seeding which

torrent. Since widgets also have a torrent which it seeds when the widget is

installed, this information is automatically propagated by BuddyCast. Another

way is by hooking into the swarm: retrieving peers from the tracker, DHT or PEX

messages. The peers that are seeding are likely to have installed the widget. Of

course, the swarm seems the most active and up to date, thus this will be the

primary source for widget communication partners.

4.1.4 Widget Market

The Widget Market is the part of the system that allows users to browse, install,

rate and review widgets. It collaborates closely with the Discovery and Down-

load subsystem. After the widget to be installed is downloaded, the Widget Run-

24

QLectives Deliverable D4.1.1

time Environment is called to install the widget.

In our implementation the Widget Market is a widget itself, and use the Wid-

get Communication and Storage features to disseminate and store ratings and

reviews. The reasons are as follows. First, the Widget Communication will only

exchange information with peers that have the same widget. This implies that

the bandwidth of other peers is not wasted and every exchange of information is

useful for the receiver. Communication is thus a lot more effective than for exam-

ple using BuddyCast, which would exchange ratings and reviews for millions of

torrents, most of which the receivers of those ratings and comments will not look

at. The second reason is that using this setup we can easily show the effectiveness

of the Widget Communication and Storage subsystem.

4.2 Technical Design

In this section, we give the details of our design. We start by presenting the ar-

chitecture of the system and then discuss each subsystem in detail. In Figure 4.1,

the class diagram of the major components are visualised with their connections

to the associated Tribler components. BuddyCast, MetadataHandler, TorrentCol-

lecting and the OverlayBridge are original components of Tribler, which are used

by or modified for our system.

4.2.1 Runtime Environment

The WidgetPanel, WidgetCore and WidgetDBHandler together form the Wid-

get Runtime Environment. The WidgetPanel is the panel where the widgets are

shown on. The WidgetCore is used for monitoring widget downloads for installa-

tion, reading the widget files and installation of the widgets. The WidgetDBHan-

dler is the database handler for both the Widget and the WidgetInstance tables.

Apart from the usual insert, update and delete functions, it has more advanced

functions such as calculating a suitable free position on the WidgetPanel for a

widget using other widget locations and sizes, and selecting a popular widget

for downloading.

When a torrent is received from the MetadataHandler, various torrent infor-

mation is stored in the database. Widget torrents are enriched with specific wid-

get data and this is stored in the Widget database table. The fields it includes

25

QLectives Deliverable D4.1.1

Figure 4.1: Class Diagram of the Widget System in relation to QLectives Platform

Figure 4.2: Database design of the Widget System.

can be viewed in Figure 4.2. This information is primarily used by the Widget

Market.

Upon installation of a widget, the widget filename is retrieved from the database

and the file is read. The widget Python module is imported and a widget class

instance is made. A suitable position on the WidgetPanel is calculated and when

the widget instance, including size and position information, is inserted into the

database, it receives its unique instance ID. The widget is then encapsulated in-

side a widget wrapper, adding a title bar with close button to the widget and for

security reasons: it is harder to get to the WidgetPanel from the widget wrapper,

because the WidgetPanel is not the parent of the widget.

Now that the widget is installed, the WidgetCore initialises the local storage

and gossip features of the widget, by creating a database table and local storage

26

QLectives Deliverable D4.1.1

database handler, and notifying the WidgetGossipMsgHandler of this widget. It

is now possible to use the whole QLectives Platform API and Python libraries,

without intervention of the Runtime Environment. Also, the WidgetCore starts

seeding the widget file, for finding gossip communication partners and to allow

fast downloads for new users of the widget.

Upon removal of the widget instance, its instance is removed from the Wid-

getPanel and WidgetGossipMsgHandler, and removed from the WidgetInstance

table. The seeding of the widget file is stopped and the user is removed from that

swarm, but the Widget file itself is kept on disk. This enables fast re-installation

without the need for downloading the widget again. Upon re-installation, the

local storage is lost because that table is dropped when the widget instance is

removed.

4.2.2 Widget Format

Widgets consist of one Python file, thus one module. However, the widgets

Python file should conform to a specific format. First, it is necessary put the fol-

lowing metadata in the widget module: name, author, version, description. Sec-

ond, the frontpage and menuitem options can be set. They default to a frontpage

widget without menuitem. For frontpage widgets, the width and height must

also be set. Further, there must be a widget class in the file, that extends the tri-

bler widget class, which is basically a panel with several function stubs, such as

OnClose, OnPostInit, OnCreateGossipMessage, OnHandleGossipMessage, and

OnMenu. In the init function, the user interface must be created. In this widget

class, the gossip option can be enabled, and the local storage structure must be

set. Further, the widget developer is left free to put whatever he wants in the

Python file.

4.2.3 Security

As discussed, we choose to implement three security measures, namely code

signing, whitelisting and a rating system.

Code signing uses the facilities provided by the QLectives Platform to sign

a torrent with the users PermID. When the widget is inserted into the Platform,

a torrent is created and the torrent is automatically signed with the publishers

27

QLectives Deliverable D4.1.1

PermID. Using this signature it is possible to verify the publisher of the widget.

Further, the infohash in the torrent is used to check the integrity of the widget

code.

Whitelisting is done much like public key infrastructures. At first, every wid-

get is untrusted. There are a few initially trusted peers, that can create certificates

to whitelist widget authors. In a whitelist certificate, the public key (PermID) of

the widget author is put and it is then signed by the initially trusted peer. Signing

is done by first adding the signers PermID and the date to the certificate, creating

a signature of this certificate and adding the signature to the certificate. Validat-

ing a certificate can be done by first removing the signature from the certificate

and then verifying the certificate, signer PermID and signature. Initially, only

whitelisted widgets are shown in the Widget Market, but there is an option to

show every widget, including the untrusted ones.

Finally, the rating system makes use of direct feedback from users to provide

an initial body of information for users to asses the usefulness and security of a

widget.

4.2.4 Discovery and Download

Widget discovery is done by first creating torrents for the widgets and seeding

them in the QLectives Platform. BuddyCast then automatically disseminates the

widget torrents just like the other torrents. A BuddyCast message includes in-

fohashes of the torrents it is seeding and the infohashes it has collected most re-

cently. Each receipt of a BuddyCast message triggers the TorrentCollecting mod-

ule to select one random torrent to download from the other peer. By extending

the lists of infohashes with the type of the torrent (video, music, document, wid-

get, etc.), we can differentiate the widgets from other file types. Therefore, Tor-

rentCollecting can be more effective and specialised. For example, when the user

is primarily interested in movies, it can create a bias by selecting more movie tor-

rents to collect than other torrents. For the current release we implemented Sim-

pleWidgetTorrentCollecting, an extension of the TorrentCollecting module that

selects either a widget torrent or another type of torrent. The widget torrent that

will be selected is the most popular widget locally known; the other types of tor-

rents are still randomly selected. The calculation of the popularity of torrents is

discussed in the next subsection.

28

QLectives Deliverable D4.1.1

The MetadataHandler is the QLectives Platform component that handles the

downloading of torrent files. When a torrent is downloaded, the extra widget in-

formation that is stored in the widget torrent (name, author, version, description)

is added to the database and will be available to the Widget Market from then on.

The MetadataHandler then informs the WidgetCollecting module that there is a

new widget torrent available.

WidgetCollecting is the component that is dedicated to downloading the most

popular widgets on discovery, one at a time. Widgets can also be downloaded

when the user selects a widget to be installed which is not yet collected. When

WidgetCollecting is initiated, it first checks whether there are any widgets being

downloaded. These downloads are checked whether they are being downloaded

for installation or not. When there is a widget that is not being downloaded

for installation, WidgetCollecting continues to monitor that widget. If there is

no widget currently being collected, it queries the database for the most popu-

lar widget locally known that is not yet collected, and starts to download and

monitor that widget. When there are no widgets locally known that are not yet

collected, it waits for the MetadataHandler to send a notification of a new widget

torrent and starts to download that widget.

When the widget is collected within the time limit, a value that can be adjusted

but is set at a 5 minutes default, the procedure to find a new widget to collect is

restarted. But when the widget download takes too long, it tries to find another

widget to collect. If another widget is found, the current widget is marked as be-

ing a slow download, and starts downloading the other widget instead. If not, it

will reset the time limit and proceed with the slow download. Bandwidth limita-

tions for widget collecting are currently not implemented, as widgets are so small

they can be downloaded without notice with current Internet connection speeds.

However, because WidgetCollecting uses the standard BitTorrent Download API

of the QLectives Platform, WidgetCollecting could easily be extended with band-

width limitations, when necessary. The widget collecting process is illustrated by

the state machine in Figure 4.3.

4.2.5 Widget Popularity

The Widget TorrentCollecting and WidgetCollecting both make use of the pop-

ularity of widgets. A natural value for the popularity would be the swarm size

29

QLectives Deliverable D4.1.1

Figure 4.3: State machine of the WidgetCollecting module.

of the torrent, or a derivative of this. Since some trackers and peers lie about the

number of seeders and leechers, giving false popularitys, it is necessary to ver-

ify this information. In order to do so, BuddyCast was extended such that peers

exchange their latest information about the swarm. This swarm size information

contains the number of seeders, leechers and the number of locally met QLectives

Platform peers who are seeding this torrent. The swarmsize information from all

encountered peers is stored with timestamps in the Popularity table.

For ranking torrents by popularity, we average the latest number of peers,

the number of QLectives Platform seeds seen by this peer, and the number of

locally known QLectives Platform seeds. The number of locally known QLectives

Platform seeds is added to reduce the effect of lying peers. The value for each

torrent is saved per torrent in QLectives Platforms Torrent table, and updated

when new popularity information is received.

4.2.6 Widget Communication and Storage

The Widget Communication and Storage subsystem encompasses two things.

First, it must take care of the initialisation of the communication and local storage.

Second, it must allow the widgets to communicate with each other by finding the

30

QLectives Deliverable D4.1.1

communication candidates and dispatching messages.

The first task is done by the WidgetCore upon installation of the widget. The

widget specifies the local storage structure within the Python file as a list of tu-

ples. The first entry of the tuple is the column name and the second entry the

column type. The primary key of the table can be specified by placing the key-

word “key” behind the column type of the primary key columns. Valid column

types are “integer”, “text” and “numeric”. The WidgetCore validates the local

storage structure and dispatches the creation of the database table to the Widget-

DBHandler. When the local storage table is initialised, the widget gets a database

handler variable, which can be used to manipulate the table. The widget must

also specify whether it would like to use the gossip features. When this is the

case, the WidgetCore notifies the WidgetGossipMsgHandler of this new widget.

The WidgetGossipMsgHandler takes care of all the intra-widget communica-

tion. It keeps a list of all the widget instances and a queue of their connection

candidates. Every gossip round, it calls the function of the widgets that create

and return their gossip message, validates the message, selects a gossip candi-

date per widget and tries to send the message. Before the message is sent, the

message is prepended with the WIDGET GOSSIP type and the widget infohash.

Similar to BuddyCast, it keeps a Send Block List and Receive Block List per wid-

get. When a message is sent to/received from a particular peer, the peer is kept

in the Send/Receive Block List for the block interval, respectively. When the peer

is removed from the list, it is added to the end of the connection candidate list.

After selecting a gossip communication partner from the connection candidate

list, we shuffle the list to randomise peer selection.

Upon receipt of a WIDGET GOSSIP message, the widget infohash is taken

from the message and it is checked whether the widget is installed. If not, a

WIDGET NOT INSTALLED message will be replied. If the widget is installed,

the appropriate widget message handler is called. After handling the message,

the peer is added to the Receive Block List. When a WIDGET NOT INSTALLED

is received, the peer is removed from that widgets connection candidate list and

the Tribler Preferences table is updated. When a message could not be sent, the

peers number of tries is increased and the peer is added to the end of the list. If

the number of tries is greater than three, the peer is removed from the connection

candidates.

31

QLectives Deliverable D4.1.1

Connection candidates are added from BuddyCast messages and Swarm con-

nections. Upon receipt of a BuddyCast message, it is checked whether the other

peer has installed widgets we have installed too. If this is the case, we add the

peer as connection candidate for the widget. When a swarm connection is made,

we also check whether this is a widget swarm or not. If it is, the connection part-

ner is added. Because the swarm connection is already established, we do not

have to create an additional connection and thus keep the number of connections

to a minimum. Further, we know from the peer that he is online because we just

communicated with him. When the QLectives Platform is started, initial connec-

tion candidates are retrieved from the Preference table of Tribler. This table stores

information on who is seeding which torrents.

4.2.7 Widget Market

To accomplish the goals of creating a Widget Market, we created a management

widget. A widget is ideal for this, because it requires a lot of user interface code

and the Widget Communication and Storage features for the widgets are ideal to

disseminate reviews and ratings.

We must define the local storage structure to store the reviews per widget,

and choose a gossip message format. We define a review as a comment and a

rating on a widget. The local storage structure can be seen in Table 4.1. Because

we limit each user to rate and review each widget only one time, we must use the

PermIDs of the users and the infohashes of the widgets as primary key. Further,

we added a human readable name. The rating, comment and date fields are self-

explanatory. The clock integer is used to create an order in the reviews, such that

a review with a reply to another user is shown beneath that user. When a rating

is inserted, its clock value must be higher than the maximum clock value in the

table for the corresponding infohash.

The gossip message consists of the 5 most recent reviews and 5 random re-

views. Each review has the same format as the local storage structure.

32

QLectives Deliverable D4.1.1

Field Description Type
infohash infohash of the widget text
permid permid of rating/comment author text
name name of the rating/comment author text
comment the comment text
rating the rating integer
date local date when this rating/comment was added numeric

Table 4.1: Local Storage Table structure for storing the Widget Markets widget
reviews.

33

QLectives Deliverable D4.1.1

34

Chapter 5

Summary and Further Research

Questions

This report documents the first release of the QLectives Platform, a set of modules

that can be used to base the development of different P2P applications. For that,

this report describes the code base which the QLectives Platform is part of, a

code base that is shared with Tribler and QMedia. The overall architecture and

background of the different modules that compose the architecture were detailed

and discussed. Given this description, the remainder of the document presents

the contributions of the QLectives project to the common code base that were

necessary to meet the QLectives requirements for version 1.0 of the QLectives

Platform.

This version of the QLectives Platform is part of the QMedia release that will

be deployed in the first quarter of 2010. The experience with this deployment

will inform the forthcoming development of the platform in conjunction with

the research plan of QLectives. The release of QLectives Platform version 2.0 is

scheduled for month 24 of the project.

35

QLectives Deliverable D4.1.1

36

Bibliography

[1] A.-M. Kermarrec, M. van Steen, Eds. ACM SIGOPS Operating Systems Re-

view 41, Special Issue on Gossip-Based Networking. 2007.

[2] F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral

Requirements for Unicast UDP. RFC 4787 (Best Current Practice), January

2007.

[3] E. Barker, Barker. W., W. Burr, W. Polk, and M. Smid. Recommendation for

Key Management - Part 1: General. Special Publication 800-57, National In-

stitute of Standards and Technology, Gaithersburg, MD, USA, August 2005.

[4] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig.

NATBLASTER: Establishing TCP connections between hosts behind NATs.

In SIGCOMM Asia Workshop, April 2005.

[5] J. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive

Algorithms for Collaborative Filtering. Technical Report MSR-TR-98-12, Mi-

crosoft Research, Redmond, WA, USA, May 1998.

[6] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication

across network address translators. In USENIX 2005, April 2005.

[7] D. Harrison. Assigned Numbers. BEP 4, BitTorrent Community Forum,

www.bittorrent.org, January 2008.

[8] G. Hazel and A. Nordberg. Extension for Peers to Send Metadata Files.

BEP 9, BitTorrent Community Forum, www.bittorrent.org, January

2008.

[9] J. Hoffman and DeHackEd. HTTP Seeding. BEP 17, BitTorrent Community

Forum, www.bittorrent.org, February 2008.

37

QLectives Deliverable D4.1.1

[10] A. Loewenstern. DHT Protocol. BEP 5, BitTorrent Community Forum, www.

bittorrent.org, January 2008.

[11] A. Nordberg, L. Strigeus, and G. Hazel. Extension Protocol. BEP 10, BitTor-

rent Community Forum, www.bittorrent.org, January 2008.

[12] R. Rahman, D. Hales, M. Meulpolder, M. Clements, V. Heinink, J. Pouwelse,

and H. Sips. Robust Vote Sampling in a P2P Media Distribution System.

Technical Report PDS-2008-004, Delft University of Technology, Delft, The

Netherlands, May 2008.

[13] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities

for NAT (STUN). RFC 5389 (Proposed Standard), October 2008.

[14] B Schneier. Applied Cryptography. John Wiley & Sons, New York, NY, USA,

2nd edition, 1996.

[15] Tim Tucker. ABC [Yet Another Bittorrent Client]. http://

pingpong-abc.sourceforge.net/, May 2009.

[16] S. Voulgaris and M. van Steen. Epidemic-style Management of Semantic

Overlays for Content-Based Searching. In Proceedings 11th International Euro-

Par Conference, pages 1143–1152, Lisbon, Portugal, August 2005.

38

Appendix A

Overlay-Swarm module

BitTorrent does not require strong authentication of peers, as peer-to-peer inter-

actions are transient and shortlived and security stems from the digests in the

trusted torrent file. In the context of the QLectives Platform, however, we want

to establish longer term relationships between peers and introduce a number of

privileged operations which should only be available to friends. We therefore

extend the protocol with secure, permanent peer identifiers called PermIDs. We

assume a PermID maps to a single IP address and port number and is initially

also used to identify users. The mapping of PermID to IP address is controlled

by the owner of the PermID (a user). Initially we used PermIDs for authentication

of friends in cooperative downloads.

The idea is to use public-key cryptography and give each peer a public/private

keypair, where the public key will act as the PermID. We intend to use Elliptic

Curve-based public key cryptography [14] because it provides stronger protec-

tion using small keys than e.g. RSA-based algorithms [3]. Having small PermIDs

is useful to allow caching of large numbers of (PermID,IP) pairs, as discussed

next.

A.1 PermIDs

In the QLectives Platform, each client creates a public/private key pair based on

Elliptic Curve Cryptography. The (currently uncertified) public key acts as the

PermID for the user. Users distribute this PermID to their friends out-of-band

to establish trusted friend relationships. When two peers connect as part of a

39

QLectives Deliverable D4.1.1

download, the QLectives Platform client checks whether the peer supports our

PermID extension. If so, it will also setup a overlay-swarm connection to the

peer. To successfully set up an overlay-swarm connection both peers need to

authenticate themselves using the standard ISO/IEC 9798-3 challenge/response

identification protocol.

If the peer is successfully authenticated but not a friend of the user (i.e., does

not appear in the list of friends’ PermIDs), the QLectives Platform will allow

it to request non-privileged operations, such as exchanging file preferences (see

Section B.1). If the peer is a friend, it may request privileged operations such as

coordinating a friends-assisted download (see Section D).

A.2 The Overlay Swarm

The recommendation and cooperative download feature both require new Bit-

Torrent protocol messages. We require a clean method for extending the protocol

because our aim is to include more features in the future. Another requirement

is being the least invasive in existing implementations. Furthermore, the cur-

rent BitTorrent protocol does not allow communication outside the context of a

swarm, that is, clients can only communicate with clients that are downloading

the same file. For our extensions, we must be able to communicate outside the

context of a single file swarm.

We therefore propose to create a new virtual swarm that encompasses all

peers that are using the system, called the overlay swarm for high-level commu-

nication between peers. The swarm to which a peer connection belongs is de-

fined by the infohash field during the initial BitTorrent handshake. This infohash

normally contains the SHA1 hash of the contents of the torrent file. In case of

the overlay swarm, the infohash must contain a value of all zeros. The overlay

swarm has no central BitTorrent tracker. A peer that wants, for example, to ex-

change preference lists with another peer must use the overlay swarm. The peer

connects to the other peer’s listen socket and uses the zero infohash value in the

handshake. If the handshake is successful both parties know that new extension

messages can be exchanged. After connecting to a peer on the overlay swarm the

peers must run the challenge/response protocol from Section A to exchange and

validate their PermIDs before any other communication.

40

QLectives Deliverable D4.1.1

By using this non-valid infohash value we remain fully backwards compatible

and also are minimally invasive to the BitTorrent protocol. It also does not require

extra TCP listen ports. The latter implies that no extra configuration of firewalls

or Network Address Translators (NATs) is required by the user. This overlay can

be extended in the future with new messages for secure gossip, sharing ratio en-

forcement, social networking, voting/moderation, reputation management, etc

.

A.3 Protocol Versioning

As we expect the overlay-swarm protocol to change frequently as new features

are added or improved, we have to allow for many different versions of the pro-

tocol. Traditionally, the BitTorrent protocol has been versioned using the 64 re-

served bits in the BitTorrent header.

More accurately phrased, the client’s features are expressed using the reserved

bits. See [7] for the current allocation of the reserved bits. More recently, various

vendors have started using the (now) official BT extension protocol [11]. We do

the same as it has a larger identifier space and thus doesn’t require coordination

with other BitTorrent vendors to prevent clashes.

A.3.1 Basic Protocol Versioning

We currently have one change to the basic protocol, namely, Merkle torrents. For

this feature, we used a reserved bit. At the time, there was only one officially

reserved bit, the right-most bit. This is used by BitTorrent 4 to indicated DHT-

based tracker support. The “de facto” standards were as follows:

Azureus The left-most bit indicates support for the Azureus Messaging Protocol.

BitComet The first 2 bytes spell ‘ex’.

Therefore, to prevent clashes we used bits in the middle of the 64-bit sequence.

To indicate Merkle-torrent support, a client must set bit 42 (where the left-most

bit is bit 0 and the right-most is 63).

41

QLectives Deliverable D4.1.1

A.3.2 Overlay-swarm Protocol Versioning

We expect considerable protocol evolution in the swarm protocol, so it will be

versioned differently. An important requirement is to allow backward compati-

bility. That is, if the protocol has been upgraded to V2, but a V2 client can still

talk to a V1 client and vice versa, this should be possible.

To indicate support for any version of the overlay-swarm protocol, a client

must use the BT extension protocol. In particular, it must define the extension

Tr OVERLAYSWARM in the EXTEND handshake message ‘m’ field. Preferably the

extension should have message ID 253.

Which versions of the protocol are spoken is currently communicated via the

peer-ID field, as we do not use the peer ID in the overlay swarm. The version-

ing information will be encoded into the 20-byte peer ID field of the header as

follows:

Bytes 0–15 Used as before.

Bytes 16+17 16-bits big endian unsigned integer indicating the lowest protocol

version this client supports.

Bytes 18+19 16-bits big endian unsigned integer indicating the current protocol

version of this client.

In general, version negotiation works as follows. Peer A initiates an overlay-

swarm connection to B encoding the lowest and current versions in A’s peer ID.

B checks if it supports a protocol in A’s range. If not, it closes the connection. If so,

it does not close the connection and sends its own handshake if it did not already

do so (B may send it before the check). Upon receipt of B’s info A does the same

check. If it does not fail, A and B will choose the highest support protocol version.

Normally, the lowest protocol field should be set to the lowest version sup-

ported. Alternatively, a client may set it lower. Consider the following example:

Assume there are 3 versions of the protocol: 3,4 and 5. Protocol 3 and 5 are good,

but protocol 4 is broken. Client A wants to support all the good protocols, but

not broken protocol 4. A then sets the oldest protocol it can support to 3 instead

of 4 and the current one to 5.

To prevent using protocol 4, A then acts as follows. Assume B supports at

most protocol 4 and at least protocol 2. A initiates an overlay swarm connection

42

QLectives Deliverable D4.1.1

with B. Via the normal procedure the candidate protocol would be 4, which is

unacceptable to A. To fix this situation A closes the current connection, and then

reconnects to B with the oldest protocol and current protocol set to 3 (i.e., the

only good protocol that both A and B can speak).

A.3.3 Protocol History

v1 Used only internally.

v2 First public release, QLectives Platform>= 3.3.4

v3 Second public release, QLectives Platform>= 3.6.0, Dialback, BuddyCast 2.

v4 Third public release, QLectives Platform>= 3.7.0, BuddyCast 3.

v5 Fourth public release, QLectives Platform>= 4.0.0, Social Networking (SO-

CIAL OVERLAP message).

v6 Fifth public release, QLectives Platform>= 4.1.0, Remote query, extra BC

fields.

v7 Sixth public release, QLectives Platform>= 4.5.0, Remote monitoring and

friendship making support.

43

QLectives Deliverable D4.1.1

44

Appendix B

Decentralized Recommendation

Support Module

The list of content a person downloads via BitTorrent can be considered the taste

of the user. There are well-known centralized techniques for using your list of

downloads and those of other users to discover new content that you will want to

download. An example of such a recommendation technique is user-based collab-

orative filtering [5]. We have developed a decentralized version of this algorithm

that will allow software built on theQLectives Platform to make such personal

recommendations.

B.1 BuddyCast Protocol

Through its downloads the user builds up a preference list of content. The prefer-

ence list contains by default all downloaded files from which the user can add or

remove entries. These preference lists are exchanged freely amongst peers using

the Buddycast algorithm. Using this algorithm the user builds a collection of a few

hundred or more of such preference lists. This collection is called the Preference

Cache.

The recommender component uses the Preference Cache to calculate both

similarity between peers and to recommend certain content the user is predicted

to like, using a special collaborative filtering algorithm. When a certain peer has

a preference list with high similarity to the user’s they have the same download

taste. We call such similar peers taste buddies.

45

QLectives Deliverable D4.1.1

Epidemic Protocol

The Buddycast algorithm is based on an epidemic protocol and roughly works

as follows. Each peer maintains two lists of peers: (1) a list of its top-N taste

buddies along with their current preference lists, and (2) a list of random peers.

Periodically, a peer selects an entry from one of the lists and sends it its preference

list, taste-buddy list and a selection of random peers. The receiving peer stores

the preference list and uses the taste buddy and random peer info to update its

own lists.

Furthermore, if the sending peer has downloaded some content which is of in-

terested to the receiving peer (according to the collaborative filtering algorithm),

the receiving peer may request the associated torrent file for the content from

the sender, using a GET METADATA message. It will also download the torrent

files from some randomly selected content, to improve the spread of information

through the network. The whole process is referred to as torrent collecting. We

alternatingly select a random peer and a taste buddy to exchange with. The exact

protocol is described below.

BuddyCast takes into consideration the connectivity of the peers. A peer is con-

nectible if it can be reached by another peer from the Internet. An unconnectible

peer can only talk to other peers if it itself initiates a connection. We found that

many peers are, unfortunately, unconnectible due to extensive firewalls and the

dynamic property of peer-to-peer networks. To counter this problem, Buddy-

Cast keeps open connections with a number of peers and only uses the addresses

of the peers it is currently connect to fill the outgoing message, so all the peers

broadcast by a peer are online.

Initially, the links to similar peers created by the BuddyCast algorithm were

used just for recommending new content in a passive way. Later, we started using

the links to answer active keyword searches from the user for particular content.

The rationale is still that the similar peers are more likely to have the content the

user is searching for and thus keeping links to them gives a higher hit rate. To

improve the keyword search capability we extended the protocol. A peer now

sends a list of recently collected torrents, that is, torrents he recently retrieved

from other peer or obtains from an RSS feed. This list ensures that when two

random peers meet, they both can discover and exchange a fresh torrent file.

46

QLectives Deliverable D4.1.1

B.2 Detailed Algorithm

A peer running BuddyCast 2 keeps the following data structures in memory:

Connection List C - A list of peers to whom we keep open TCP connection.

C consists of the following 3 sublists.

• Connectible Connected Taste Buddy List CT : A list of connectible peers to

whom we keep a connection and which have similar tastes as us. The

maximum number of peers in this list is 10.

• Connectible Connected Random Peer List CR: A list of connectible peers

who established connection with us most recently and are not in CT .

The maximum number of peers in this list is 10.

• Unconnectible Connected Peer List CU : A list of unconnectible peers who

connected to us. The maximum number of peers in this list is 10.

Connection Candidates List CC - A list of peers which we can select as the target

for a BUDDYCAST message. The maximum number of peers in this list is

100.

Block List B - It contains a number of peers which you should not contact in a

period (4 hours). It includes a Send Block List BS (do not send message to

any peer in this list) and a Receive Block List BR (discard messages received

from any peer in this list).

In addition to the in-core lists, every QLectives Platform client has several

database to store the information of peers, torrents and preferences it discovered

in the network. We call these database the megacaches. Using the megacaches, a

QLectives Platform client can calculate similarity between peers and recommend

torrents to download.

B.2.1 Pseudo Code

When QLectives Platform starts it executes the algorithm shown in Figure B.1,

and sends out BUDDYCASTmessages periodically. When it receives a BUDDYCAST

message, the client executes the algorithm of Figures B.2, updating its in-core lists

and the megacaches. Both the send and receive algorithms use the

47

QLectives Deliverable D4.1.1

Table B.1: Functions in BuddyCast
Function Description
blockPeer(Q, block list, time) Add the peer Q into block list for a period of

time
fillPeers(message) Put the addresses from the indicated list in the

message
connectPeer(Q) Connect to peer Q
getSimilarity(Q) Get the similarity between peer Q and myself

createBuddycastMsg, addConnectedPeer and miscellaneous methods shown

in Figure B.3, Figure B.4, and Table B.1, respectively.

B.2.2 Valid Peers and Bootstrapping

The BUDDYCAST message requires that each client knows other online peers. Af-

ter the software is installed the client needs to obtain an initial online peer. We

call this process bootstrapping and use well known superpeers to solve it. The

addresses of the super peers are preloaded in the client’s Peer Cache.

After installation the QLectives Platform client will :

• Select a superpeer randomly from the Peer Cache.

• Connect to this superpeer via the overlay swarm.

• Send a BUDDYCAST message with an empty preference list.

• Receive a BUDDYCAST message from the superpeer with filled in random-

peers list..

• Initiate Buddycast using the superpeer’s random peers.

When a superpeer is sent a BUDDYCAST message, this superpeer will respond

with random-peers list. It may also have a filled in taste buddies list and pref-

erence lists. The latter can be used to promote certain important content and

bootstrap a taste network around it.

B.2.3 Rate Control

A vital part of any epidemic protocol such as Buddycast is controlling the band-

width it uses. Within a single minute it is possible to exchange preferences with

48

QLectives Deliverable D4.1.1

1: loop
2: wait(∆T time units) {15 seconds in current implementation}
3: remove any peer from BS and BR if its block time was expired.
4: keep connection with all peers in CT , CR and CU

5: if idle loops > 0 then
6: idle loops← idle loops− 1 {skip this loop for rate control}
7: else
8: if CC is empty then
9: CC ← select 5 peers recently seen from Mega Cache

10: end if
11: Q ← select a most similar taste buddy or a most likely online random

peer from CC

12: connectPeer(Q)
13: blockPeer(Q, BS , 4hours)
14: remove Q from CC

15: if Q is connected successfully then
16: buddycast msg send← createBuddycastMsg()
17: send buddycast msg send to Q
18: receive buddycast msg recv from Q
19: CC ← fillPeers(buddycast msg recv)
20: addConnectedPeer(Q) {add Q into CT , CR or CU according to its sim-

ilarity}
21: blockPeer(Q, BR, 4hours)
22: end if
23: end if
24: end loop

Figure B.1: The protocol of an active peer.

1: loop
2: receive buddycast msg recv from Q
3: CC ← fillPeers(buddycast msg recv)
4: addConnectedPeer(Q)
5: blockPeer(Q, BR, 4hours)
6: buddycast msg send← createBuddycastMsg()
7: send buddycast msg send to Q
8: blockPeer(Q, BS , 4hours)
9: remove Q from CC

10: idle loops← idle loops + 1 {idle for a loop for rate control}
11: end loop

Figure B.2: The protocol of a passive peer.

49

QLectives Deliverable D4.1.1

function createBuddycastMsg()
My Preferences← the most recently 50 preferences of the active peer
Taste Buddies← all peers from CT

Random Peers← all peers from CR

buddycast msg send← create an empty message
buddycast msg send attaches the active peer’s address and My Preferences
buddycast msg send attaches addresses of Taste Buddies
buddycast msg send attaches at most 10 preferences of each peer in
Taste Buddies
buddycast msg send attaches addresses of Random Peers

Figure B.3: The function of creating a BUDDYCAST message

function addConnectedPeer(Q)
if Q is connectable then

SimQ ← getSimilarity(Q) {similarity between Q and the active peer}
MinSim ← similarity of the least similar peer in CT

if SimQ ≥MinSim or (CT is not full and SimQ > 0) then
CT ← CT + Q
move the least similar peer to CR if CT overloads

else
CR ← CR + Q
remove the oldest peer to CR if CR overloads

end if
else

CU ← CU + Q
end if

Figure B.4: The function of adding a peer into CT or CR

50

QLectives Deliverable D4.1.1

many peers. When file downloads take days to complete it is important that no

excessive amount of bandwidth is consumed by Buddycast. However, discovery

of new files and new peers means that some amount of bandwidth needs to be

spent.

Currently we use a simple policy to control rate: When starting for the very

first time, we contact a peer every second for the first 2 minutes. For subsequent

starts we contact a peer every 5 seconds for the first 30 minutes. From 30 min-

utes till 24 hours that we contact a peer every 15 seconds, after that once every

minute. If we exchanged preference with a peer in the last 4 hours, we will not

contact it again (but that peer can still connect you since it may have changed its

preference).

B.3 Wire Format

The preference and taste buddy lists of a client are exchanged via the overlay

swarm (see Section A.2), using a new BUDDYCAST message. The payload of this

message contains 50 recent entries from your preference list, as well as the ad-

dress information of your 10 most similar taste buddies and 10 random peers

from your Peer Cache.

The exact format of the BUDDYCAST message is as follows. Its message ID is

249 and its payload consists of a bencoded dictionary with the following keys.

All character string values are UTF-8 encoded.

‘connectable’ Whether I am directly reachable from the Internet (Boolean)

‘ndls’ My total number of downloads (integer)

‘nfiles’ Total number of torrents I collected (integer)

‘npeers’ Total number of peers discovered (integer)

‘name’ My name as a string.

‘ip’ My current IP address (string encoding, in dotted quad format).

‘port’ My listen port number (integer encoding).

‘preferences’ List of infohashes, one per preferred file (byte string). The mini-

mum length of this list is 0, the maximum length is 50.

51

QLectives Deliverable D4.1.1

‘taste buddies’ A list of taste-buddy records. The minimum length of this list is

0, the maximum length is 10. A taste-buddy record is a dictionary contain-

ing the following keys:

‘preferences’ List of infohashes, one per preferred file (byte string). The

maximum length is 0 (i.e., unused, see below)

‘PermID’ Public key of the taste buddy (string encoding).

‘ip’ The last known IP address of the taste buddy (string encoding, in dot-

ted quad format).

‘port’ The port number that the taste buddy is listening on (integer encod-

ing).

‘similarity’ Similarity between me and this taste buddy as an integer, higher

meaning more similar.

‘connect time’ When I established a connection with this taste buddy as an

integer.

‘oversion’ The overlay-protocol version (see Sec. A.2 spoken by this taste

buddy.

‘nfiles’ Number of torrent files this taste buddy has collected as an integer

(used to select peers to send remote keyword searches to).

‘random peers’ List of peer addresses. The minimum length of this list is 0, the

maximum length is 10. A peer address is a dictionary with the following

keys:

‘PermID’ Public key of the random peer (string encoding).

‘ip’ The last known IP address of the random peer (string encoding, in dot-

ted quad format).

‘port’ The port number that the random peer is listening on (integer encod-

ing).

‘similarity’ Similarity between me and this random peer as an integer, higher

meaning more similar.

‘connect time’ When I established a connection with this random peer as

an integer.

52

QLectives Deliverable D4.1.1

‘oversion’ The overlay-protocol version (see Sec. A.2 spoken by this ran-

dom peer.

‘nfiles’ Number of torrent files this random peer has collected as an integer

(used to select peers to send remote keyword searches to).

‘collected torrents’ List of infohashes, one per recently collected file (byte string).

The minimum length of this list is 0, the maximum length is 50.

After receiving a BUDDYCAST message a peer must directly send its own mes-

sage in reply, filled with the peer’s own preferences and taste buddies. After

sending the reply, the peer updates its Preference Cache and its Peer Cache. We do

not yet take security into account and thus simply overwrite existing entries if

the age the obtained preference list is superior then any possible previous entry.

If a peer encounters unknown infohashes in the preference lists it may send a

GET METADATA message to obtain the metadata (i.e., the torrent file) of this new

content, as described below.

To keep the overlay-swarm connections to taste buddies and random peers

open, (see Figure B.1) an active peer may send KEEP ALIVE messages periodi-

cally. The message ID of a KEEP ALIVE message is 240 and it has no body.

B.3.1 History and Open Issues

The above specification describes the BUDDYCAST message as it is in version

6+7 of the overlay-swarm protocol. Previous versions have the following changes:

v3 • Added ‘connectable’ field.

• Removed ‘age’ field from per taste-buddy/random-peer dict.

v4 • Added ‘collected torrents’ field.

• Added ‘similarity’ field to per taste-buddy/random-peer dict.

• Deprecated ‘preferences’ field in per taste-buddy/random-peer dict,

now always empty.

v6 • Added ‘npeers’, ‘ndls’ and ‘nfiles’ field.

• Added ‘oversion’ field to per taste-buddy/random-peer dict.

• Added ‘nfiles’ field to per taste-buddy/random-peer dict.

53

QLectives Deliverable D4.1.1

B.4 Obtaining Metadata

After a preference exchange the GET METADATA message is used to obtain infor-

mation on a unknown infohash. The response is a METADATA message contain-

ing the torrent file for the given infohash. Since this mechanism was added to

QLectives Platform in 2005, an official BitTorrent extension has been proposed

for obtaining the torrent file of a swarm. See [8].

The exact format of the GET METADATA message is as follows. Its message ID

is 248 and its payload consists of a bencoded infohash.

The exact format of the METADATA message is as follows. Its message ID is

247 and its payload consists of a bencoded metadata record. A metadata record

is a dictionary with the following keys:

‘torrent hash’ The infohash of the torrent (byte string)

‘metadata’ The torrent (byte string)

‘last check time’ Time of last check at the torrents tracker for how many peers

are in the swarm, UTC in seconds as integer.

‘status’ String indicating the status of the checks:

‘good’ The tracker is responding.

‘dead’ The tracker has not responded on a number of tries.

‘unknown’ The tracker is flaky.

‘leecher’ Number of downloaders at last check.

‘seeder’ Number of seeders at last check.

The check fields were added in version 4 of the overlay-swarm protocol.

54

Appendix C

Remote Query Module

The BuddyCast protocol establishes connections between a user and its taste bud-

dies, see Sec. B.1. Initially, these connections were established to allow meaning-

ful recommendation of new content to users following the principle of collabora-

tive filtering. This principle says that if two people, A and B, have a similar taste

in content, then any new content that A downloads is also likely to be appealing

to B and vice versa. At the moment, taste buddies periodically exchange informa-

tion about new content which then results in a list of recommended items for the

user. As a next step we now use these connections to taste buddies to implement

an efficient search mechanism for content. If a user wants to watch some new

content that he heard about, but it is not on his list of recommended items yet, he

can now do an explicit search of the databases of his taste buddies to see if they

have already found this content. This mechanism, known as semantic-overlay

search, has been shown to yield high hit rates [16].

The remote search mechanism queries the megacaches of the peers you are

currently connected to (as a result of the BuddyCast protocol). To query a peer’s

database, the client sends an overlay-swarm QUERY message to the peer, contain-

ing a query ID and a query specification. The receiving peer checks if the sender

has not exceeded the quota for QUERY messages. For senders who are marked

as friends by the receiver’s user, the quota is unlimited. For unknown senders

there is a 100 query quota. If the quota has not been exceeded, the receiver parses

the query and executes it on its megacache. The results are then sent back in an

overlay-swarm QUERY REPLY message that carries the same query ID and a set

of answers. At the moment, queries are limited to simple keyword searches in

55

QLectives Deliverable D4.1.1

the receiver’s torrent database, but it can be extended to full-fledged SQL-like

queries in the future.

When the query results come in, they are displayed to the user. When the

user decides to download one of the found torrents, the user clicks on the re-

sult, and its client then sends a GET METADATA message to the peer that returned

the result. The peer, if still online, will then return the desired .torrent file in a

METADATA message. This is the same mechanism for obtaining a torrent file from

a peer as used in the Cooperative Download feature, see Sec. D.

56

Appendix D

Cooperative Downloading

When there are few seeders in BitTorrent, your download speed is equal to your

upload speed. As most people have an asymmetrical network connection with

a maximum download speed that is larger than the upload speed, the downlink

is often not fully exploited. If you have a group of friends whose connections

are idle, they can be used to fill the downlink. For example, the friends can each

download a piece of the file that you not yet have using standard BitTorrent. Once

the piece is received, they then send it to you over your underutilized downlink

without expecting any data in return. So by doing barter-free downloads with

your friends you can utilize your asymmetric network link to its fullest.

Protocol

Peers from a social group that decide to participate in a cooperative download

take one of two roles: they are either coordinators or helpers. A coordinator is the

peer that is interested in obtaining a complete copy of a particular file, and a

helper is a peer that is recruited by a coordinator to assist in downloading that

file. Both coordinator and helpers start downloading the file using the classical

BitTorrent tit-for-tat and cooperative download extensions. Before downloading,

a helper asks the coordinator what piece it should download. After download-

ing a file piece, the helper sends the piece to the coordinator without requesting

anything in return. In addition to receiving file pieces from its helpers, the coordi-

nator also optimizes its download performance by dynamically selecting the best

available data source from the set of helpers and other peers in the BitTorrent net-

57

QLectives Deliverable D4.1.1

work. Helpers give priority to coordinator requests and are therefore preferred

as data sources.

The Protocol in Detail

To invoke the help of a friend, the coordinator opens an overlay-swarm connec-

tion (see Section A.2) to the helper and sends a DOWNLOAD HELP request. When

the DOWNLOAD HELP message is received, and the helper is willing to help, it ob-

tains the torrent file to use from the coordinator using a GET METADATA message.

After receiving the corresponding METADATAmessage, the helper establishes two

connections with the coordinator: a control connection and a data-exchange connec-

tion.

The control connection is used by the helper for claiming pieces at the co-

ordinator. Control connections are blocking; the helper can block waiting for

the response from the coordinator. Only the control messages RESERVE PIECES

and PIECES RESERVED are sent over the control connections. The pieces of the

file the helper downloaded on behalf of the coordinator are transferred over the

data-exchange connection. The control connection was introduced to make sure

the helper immediately knows whether a particular piece was claimed elsewhere

or not.

Whenever helper H wants to download a piece P , H first contacts the coordi-

nator and tries to reserve (claim) P using a RESERVE PIECE message. If P was

not claimed by anybody else, the coordinator sends a PIECE RESERVED mes-

sage in return, and H , in turn, sends requests for piece P to the offering peer

in the swarm. Otherwise, H checks its download bandwidth utilization. If the

amount of unused download bandwidth is above a certain threshold, H requests

P (although P was claimed by some other helper).

In order to decrease the number of messages exchanged between the coor-

dinator and its helpers, the coordinator from time to time appends a list of all

pieces that have been already claimed by others to the PIECE RESERVED reply to

a helper. This optimization greatly improves the performance in the later stages

of the download when most of the pieces have already been claimed, and only

a few still have to be downloaded. With this list, the helper can then determine

locally which pieces have been already obtained without asking coordinator for

the status of each piece separately.

58

QLectives Deliverable D4.1.1

The coordinator decides to download a missing piece from either one of its

helpers or any other peer in the swarm using the standard BT peer selection

mechanism. A helper which is getting a REQUEST message for a piece from the

coordinator puts this request in front of its sending queue, consequently giving

them the highest priority. The connections between helper and coordinator are

never choked.

59

QLectives Deliverable D4.1.1

60

Appendix E

NAT/Firewall Detection module

Many of the clients run on a machine with or behind a firewall or Network Ad-

dress Translator (NAT). This poses several problems:

1. Unless the QLectives Platform listening port (7762 by default) is opened on

the firewall, other peers cannot connect to it.

2. The QLectives Platform client can no longer obtain the IP address via which

it is reachable on the Internet from the operating system. As a result, it is

not able to provide this address to others.

To solve these problems we have extended QLectives Platform with a facility

for detecting a firewall, and discovering a client’s external IP address. In partic-

ular, we added two messages to the overlay-swarm protocol called the dialback

messages. These messages are used as follows. At client startup, 7 peers are se-

lected from the database of encountered peers. This database is initially filled

with the addresses of the 8 QLectives Platform superpeers. The client attempts to

send a DIALBACK REQUEST to each of the 7 peers using the overlay swarm.

When a peer B receives a DIALBACK REQUEST it closes the existing overlay-

swarm connection. It then tries to connect back to the initiating peer A. In par-

ticular, it will try to connect back to the IP address X that initiated the previous

connection and the listen port that peer A specified in the BitTorrent handshake

message (see Sec. A.2). If the connection succeeds, B sends an DIALBACK REPLY

message containing the IP address X it used to connect. Peer B thus informs the

initiating client A that (1) the client is reachable from the Internet and (2) what its

external IP address is (which is X).

61

QLectives Deliverable D4.1.1

To protect against malicious peers, the client will record the external IP ad-

dresses returned by the 7 peers and select the address the majority agrees on as

being its real address. If there was no majority either because not enough peers

replied or they disagreed, the client start the process over again with 7 other peers

after 30 seconds. The client will retry 5 times, so contact at most 35 peers.

In order to improve reachability of peers the client warns the user. The user

interface clearly indicates when QLectives Platform is not reachable and that port

forwarding should be turned on on its firewall for full performance.

62

Appendix F

Reputation System module

The current reputation system in the QLectives Platform is based on three parts:

ModerationCast, VoteCast and Metada dissemination. In conjunction, these three

parts allow attaching a reputation to media objects shared in the system.

F.1 ModerationCast

ModerationCast deals with spreading/dissemination of the metadata of torrents

that users add. ModerationCast has three kinds of messages:

MODERATION HAVE message which signal to other nodes a set of available

moderators stored in the megacache that can be sent if required.

MODERATION REQUEST messages which are a reply to a MODERATION HAVE

message listing which moderations are required.

MODERATION REPLY messages which contain the actual metadata for the re-

quested moderations as previously listed in the MODERATION REQUESTmes-

sage.

When a peer A connects to another peer B, MODERATION HAVE message is

sent, along with BuddyCast (if there are any moderations). B checks whether

it has that moderation or not and if so, whether it is newer than the existing

moderation in which case B sends a MODERATION REQUEST message. A sends

the moderation, in MODERATION REPLY message, which would either insert the

new record or overwrite the older one in the receiving peer.

63

QLectives Deliverable D4.1.1

F.2 VoteCast

VoteCast builds on BuddyCast and ModerationCast. Through ModerationCast,

nodes may inject and propagate metadata bound to a hash of the torrent. Users

may vote on a moderator in either a +ve (real) or -ve (fake) way or not at all. Mod-

erationCast uses these votes to determine whether to receive or pass on modera-

tions (i.e. metadata associated with a moderator).

The task of VoteCast is to allow nodes to collect these votes from other peers

they encounter (via BuddyCast) in a local BallotBox. This allows peers to deter-

mine how popular or unpopular a moderator is by counting votes. This can then

be used for relevance ranking after keyword search.

F.3 Metadata Dissemination

Moderations are disseminated in a gossip-like fashion to other peers. However,

nodes only pass on metadata from those moderators they have approved. Ap-

proval involves the user explicitly selecting a thumbs-up icon displayed next to

the metadata from the given moderator indicating a positive (+) vote for the mod-

erator. Users may also disapprove of a moderator by selecting a thumbs-down

indicating a negative (-) vote.

Over time as nodes encounter others, through gossiping, they will receive

new moderations either directly from the moderator, if they encounter them, or

from those nodes which have approved the moderator. Received moderations are

stored in a local database. Hence highly approved moderators will tend to spread

their metadata more quickly than moderators that are not highly approved. If no

other node approves a moderator then the only way that its metadata can spread

is through direct contact with other nodes. Nodes that disapprove a moderator

remove all associated moderations from their local database and refuse any new

moderations from that moderator.

Essentially then, the idea is that, “good” moderators, as judged by the ap-

proval of others, will spread their metadata quickly but “bad” moderators, ob-

taining low numbers of approvals and / or disapproval, will only be able to

spread their metadata slowly. However, it is important to note that even bad

moderators can spread their data to others through direct interactions with nodes

64

QLectives Deliverable D4.1.1

creator
metadata

+
+

+

−

m

positive node

negative node

−

Figure F.1: Spreading of moderations based on approvals and disapprovals.

that have not already indicated disapproval. Figure F.1 shows a schematic dia-

gram showing how a moderation spreads in the population based on approvals

and disapprovals by other nodes.

Because moderators can be blocked based on their moderations and forwarders

are forwarding moderations for (other) moderators, there is need for authentica-

tion of moderations. This is done using public key signatures. This prevents

alteration of moderations, which could lead to bad moderations spreading very

well and good moderators being blocked because of malicious peers forwarding

altered or fabricated moderations on behalf of the good moderator.

In order to discourage spam voting through the creation of many cheap identi-

ties VoteCast only counts votes from peers with a suitable reputation level which

is supplied by our BarterCast extension. Hence, although identities are cheap,

votes are not. This mechanism is fully covered in [12].

65

QLectives Deliverable D4.1.1

66

Appendix G

Social Networking module

The social networking features of the QLectives Platform consist of a message for

exchanging nickname and avatar pictures and a new mechanism for friendship

establishment. This mechanism does not require the two parties involved to be

online at the same time. It also does not require a central component to achieve

this asynchronicity.

G.1 Functionalities

Nickname and Picture Exchange

A user’s public name is the name chosen by the user by which he will be publicly

known. As it is chosen by the user, it is not necessarily system-wide unique. A

user’s public picture is a picture chosen by the user that will be shown to other

users.

Friendship Making

The peer who initiates a friendship request to another peer is known as the source

peer, and the peer for whom this request is intended is known as the target peer.

The functionalities provided to the users are the following:

Adding new friends In order to build a social circle, a peer can request other

peers discovered by the underlying peer sampling service (PSS), which are

potential candidates for being friends, to become their friends. The target

67

QLectives Deliverable D4.1.1

peer has to reply to the friendship request sent by the source peer, and if the

reply is positive, both the peers become friends.

Removing friends The source peer removes the target peer from its friends list.

Also, it requests the target peer to remove it from its list.

Maintaining status of friends The system must keep peers up-to-date about the

online status of their friends.

G.2 Basic request-reply protocol

For establishing a friendship link, the mechanism follows the request-reply no-

tion. The source peer initiates it by sending a friendship request to the target peer.

The target peer then takes its decision by accepting or rejecting the friendship re-

quest, and send its reply back to the source peer. If the reply is positive, both the

source and the target peer become friends.

G.3 Unavailability of the peers

In order to deal with the unavailability of both the source and the target peer, we

have designed two mechanisms, which work for both friendship requests and

friendship replies, which we discuss below.

Retry

If the target peer is not online, the source peer will retry to connect to it after ev-

ery five minutes, in case the target peer comes online. Similarly for receiving the

reply from the target peer, if the source peer is not online, or unconnectable for

some reason, the same retry mechanism is adopted by the target peer to dispatch

its reply to the source peer. The initial retry time interval of minutes is increased

to 24 hours, after one day has passed since the friendship request/reply was ini-

tiated. After a week of unsuccessful delivery of requests or replies, all pending

friendship messages (requests and replies) are dropped from the source and the

target peers. In order to increase the chances of contacting the other peer, both

the source and the target peers save messages that could not yet be successfully

68

QLectives Deliverable D4.1.1

delivered, i.e., the pending messages (requests and replies), in case they are going

offline. In their next session, both of them read these messages and then dispatch

them.

Helpers

To increase the chances of establishing a friendship link between the source peer

and the target peer, we have introduced the concept of helpers. Helpers are online

friends and taste buddies of the source peer, in case of friendship requests. And in

the case of friendship reply, they are online friends and taste buddies of the target

peer. When the source peer is unable to connect to the target peer for requesting

friendship link establishment, it dispatches its friendship request to these helpers.

Helpers then also try to contact the target peer every five minutes. Helpers also

used by the target peer for forwarding its friendship reply to the source peer, in

case it is unable to contact it. Helpers, just like the source and the target peer, also

save the unsuccessful friendship requests/replies locally when they are going

offline. On their next startup, they try to deliver them to the intended peer.

G.4 Scenarios of establishing friendship links

Depending upon the availability of the source and the target peer, we distinguish

different scenarios for establishing a friendship link between them. Note that

these scenarios only show the friendship request part. The reply part follows the

same scenarios. The possible scenarios of friendship link establishment between

the source and the target peer are the following:

• Scenario 1: Both the source and the target peers are online. The source peer

directly sends the friendship request to the target peer. Depending upon

the target peers response, it is added to the source peers friends list.

• Scenario 2: The source peer is online, but the target peer is not. The source

peer after an unsuccessful attempt to connect to the target peer, employs the

retry mechanism mentioned above, involving both itself and the helpers.

• Scenario 3: The source peer has gone offline after initiating the friendship

request, but the target peer is online. Since the source peer can not connect

69

QLectives Deliverable D4.1.1

to the target peer, it dispatches the friendship request to its helpers. The

helpers then connect to the target peer and forward the friendship request

to it.

G.5 Possible attacks prevention

In the current design, it is possible for malicious peers to target and subvert the

system. There are two main possible attacks, which are Distributed Denial of Ser-

vice (DDOS) and a special DDOS, man in the middle attack. In order to thwart

such potential attacks, we have established certain safeguards which we shall

detail below along with an explanation of the attacks. DDOS is a type of attack

where a peer is asked by a huge number of other peers for some service. The

motive behind this attack is to overload a peer so that even legitimate peers are

unable to access it and get its service. For the DDOS attack, we restrict a user, who

is running the client from a binary, to make at most 10 friends per day. We cant,

of course, overcome this problem if a user has modified our source code. This

restriction can be accomplished fairly easily as all the friendship requests will be

recorded by the system. In the man in the middle attack, a helper tries to over-

load a peer, or a group of peers, with a huge number of illegitimate friendship

requests. To counter this, we have devised a solution by incorporating the use of

signed requests: the peer who initiates the request (source peer) first signs it with

its private key. This would allow the receiver (target peer) to determine that it is

indeed from the source peer. Since only one instance of a Tribler client can run on

a single machine, no malicious peer can fake or develop multiple instances, and

thus multiple identities.

70

Appendix H

Channels module

The original BitTorrent protocol excludes mechanisms for searching, rating, and

associating descriptive metadata with, content. The TUDelft research group,

within the collaborating project P2P-NEXT, has already proposed a design for

fully distributed metadata dissemination and rating system which allows users

to locate and browse available content conveniently from within the client before

downloading (see the Appendix G for details). This idea has been redesigned

around the concept of a channel. Low quality metadata such as spam or incor-

rect information is combated through a distributed rating system based on the

sampling of user votes (or ratings) in favor (or against) those peers who sub-

mit metadata, who we now term channels (also referred to as moderators inter-

changeably), and the metadata they submit as moderations.

ChannelCast message is used in gossiping the moderations of channels, both

own and subscribed. Each ChannelCast message consists of bunch of recent and

random moderations of these channels. When a peer sends a ChannelCast mes-

sage, the receiver checks its own database to see if each received moderation is

present. If a moderation is not found, the receiver adds this record to the database

and subsequently requests (to the sender) for torrent file corresponding to this

moderation. In this way, both metadata and content of channels are spread in the

system. ChannelCast message is sent along with BuddyCast message; hence, the

load and frequency of dissemination are dependent on BuddyCast interval.

Inspired by ModerationCast (see Appendix G), ChannelCast extends its idea

(as well as replaces it), but differs in following features. First, instead of three-

message protocol of ModerationCast (Have, Request and Reply), ChannelCast

71

QLectives Deliverable D4.1.1

uses only one message. Second, unlike in ModerationCast where moderations

alone are sent, moderations are transferred along with torrents (if not present at

receiver end). Third, along with ‘infohash’, ’torrenthash’ (hash of bdecoded dic-

tionary of the whole torrent) is also a part of moderation record; this solves the

problem of a fake-tracker attack, where the tracker field(s) of the torrent (i.e., ’an-

nounce’ / ’announce-list’) are changed to fake address which corrupts the torrent,

despite its infohash being unaltered.

72

